Introduction

Nonparametric function estimation has many useful applications in quantita-
tive finance. We study four areas of quantitative finance: statistical finance, risk
management, portfolio management, and pricing of securities.!

A main theme of the book is to study quantitative finance starting only with
few modeling assumptions. For example, we study the performance of non-
parametric prediction in portfolio selection, and we study the performance
of nonparametric quadratic hedging in option pricing, without constructing
detailed models for the markets. We use some classical parametric methods,
such as Black—Scholes pricing, as benchmarks to provide comparisons with
nonparametric methods.

A second theme of the book is to put emphasis on the study of economic
significance instead of statistical significance. For example, studying economic
significance in portfolio selection could mean that we study whether prediction
methods are able to produce portfolios with large Sharpe ratios. In contrast,
studying statistical significance in portfolio selection could mean that we study
whether asset returns are predictable in the sense of the mean squared pre-
diction error. Studying economic significance in option pricing could mean
that we study whether hedging methods are able to well approximate the pay-
off of the option. In contrast, studying statistical significance in option pricing
could mean that we study the goodness-of-fit of our underlying model for asset
prices. Studying statistical significance can be important for understanding the
underlying reasons for economic significance. However, the study of economic
significance is of primary importance, and the study of statistical significance
is of secondary importance.

1 The quantitative finance section of preprint archive “arxiv.org” contains four additional sections:
computational finance, general finance, mathematical finance, and trading and market microstruc-
ture. We cover some topics of computational finance that are useful in derivative pricing, such
as lattice methods and Monte Carlo methods. In addition, we cover some topics of mathematical
finance, such as the fundamental theorems of asset pricing.
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A third theme of the book is the connections between the various parts of
quantitative finance.

1) There are connections between risk management and portfolio selection: In
portfolio selection, it is important to consider not only the expected returns
but also the riskiness of the assets. In fact, the distinction between risk man-
agement and portfolio selection is not clear-cut.

2) There are connections between risk management and option pricing: The
prices of options are largely influenced by the riskiness of the underlying
assets.

3) There are connections between portfolio management and option pricing:
Options are important assets to be included in a portfolio. In addition, mul-
tiperiod portfolio selection and option hedging can both be casted in the
same mathematical framework.

Volatility prediction is useful in risk management, option pricing, and portfo-
lio selection. Thus, volatility prediction is a constant topic throughout the book.

1.1 Statistical Finance

Statistical finance makes statistical analysis of financial and economic data.

Chapter 2 contains a description of the basic financial instruments, and it
contains a description of the data sets that are analyzed in the book.

Chapter 3 studies univariate data analysis. We study univariate financial time
series, but ignore the time series properties of data. A decomposition of a uni-
variate distribution into the central part and into the tail parts is an important
theme of the chapter.

1) We use different estimators for the central part and for the tails. Non-
parametric density estimation is efficient at the center of a univariate
distribution, but in the tails of the distribution the scarcity of data makes
nonparametric estimation difficult. When we combine a nonparametric
estimator for the central part and a parametric estimator for the tails then
we obtain a semiparametric estimator for the distribution.

2) We use different visualization methods for the central part and for the tails.
We apply two basic visualization tools: (1) kernel density estimates and (2)
tail plots. Kernel density estimates can be used to visualize and to estimate
the central part of the distribution. Tail plots are an empirical distribution
based tool, and they can be used to visualize the tails of the distribution.

Chapter 4 studies multivariate data analysis. Multivariate data analysis con-
siders simultaneously several time series, but the time series properties are
ignored, and thus the analysis can be called cross-sectional. A basic concept
is the copula, which makes it possible to compose a multivariate distribution
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into the part that describes the dependence and into the parts that describe
the marginal distributions. We can estimate the marginal distributions using
nonparametric methods, but to estimate dependence for a high-dimensional
distribution it can be useful to apply parametric models. Combining nonpara-
metric estimators of marginals and a parametric estimator of the copula leads
to a semiparametric estimator of the distribution. Note that there is an analogy
between the decomposition of a multivariate distribution into the copula and
the marginals, and between the decomposition of a univariate distribution into
the tails and the central area.

Chapter 5 studies time series analysis. Time series analysis adds the elements
of dependence and time variation into the univariate and multivariate data anal-
ysis. Completely nonparametric time series modeling tends to become quite
multidimensional, because dependence over k consecutive time points leads
to the estimation of a k-dimensional distribution. However, a rather conve-
nient method for time series analysis is obtained by taking as a starting point
a univariate or a multivariate parametric model, and estimating the parameter
using time localized smoothing. For example, we can apply time localized least
squares or time localized maximum likelihood.

Chapter 6 studies prediction. Prediction is a central topic in time series
analysis. The previous observations are used to predict the future observations.
A distinction is made between moving average type of predictors and state
space type of predictors. Both types of predictors can arise from parametric
time series modeling: moving average and GARCH (1, 1) models lead to moving
average predictors, and autoregressive models lead to state space predictors. It
is easy to construct nonparametric moving average predictors, and nonpara-
metric regression analysis leads to nonparametric state space predictors.

1.2 Risk Management

Risk management studies measurement and management of financial risks. We
concentrate on the market risk, which means the risk of unfavorable moves of
asset prices.?

Chapter 7 studies volatility prediction. Prediction of volatility means in our
terminology that the square of the return of a financial asset is predicted. The
volatility prediction is extremely useful in almost every part of quantitative

2 Otbher relevant types of risk are credit risk, liquidity risk, and operational risk. Credit risk means
the risk of the default of a debtor and the risks resulting from downgrading the rating of a debtor.
Liquidity risk means the risk from additional cost of liquidating a position when buyers are rare.
Operational risk means the risk caused by natural disasters, failures of the physical plant and equip-
ment of a firm, failures in electronic trading, clearing or wire transfers, trading and legal liability
losses, internal and external theft and fraud, inappropriate contractual negotiations, criminal mis-
management, lawsuits, bad advice, and safety issues.

3
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finance: we can apply volatility prediction in quantile estimation, and volatility
prediction is an essential tool in option pricing and in portfolio selection.
In addition, volatility prediction is needed when trading with variance
products. We concentrate on the following three methods:

1) GARCH models are a classical and successful method to produce volatility
predictions.

2) Exponentially weighted moving averages of squared returns lead to volatility
predictions that are as good as GARCH (1, 1) predictions.

3) Nonparametric state space smoothing leads to improvements of GARCH
(1,1) predictions. We apply kernel regression with two explanatory
variables: a moving average of squared returns and a moving average of
returns. The response variable is a future squared return. A moving average
of squared returns is in itself a good volatility predictor, but including a
kernel regression on top of moving averages improves the predictions. In
particular, we can take the leverage effect into account. The leverage effect
means that when past returns have been low, then the future volatility tends
to be higher, as compared to the future volatility when the past returns have
been high.

Chapter 8 studies estimation of quantiles. The term value-at-risk is used to
denote upper quantiles of a loss distribution of a financial asset. Value-at-risk
at level 0.5 < p < 1 has a direct interpretation in risk management: it is such
value that the probability of losing more has a smaller probability than 1 — p.
We concentrate on the following three main classes of quantile estimators:

1) The empirical quantile estimator is a quantile of the empirical distribution.
The empirical quantile estimator has many variants, since it can be used in
conditional quantile estimation and it can be modified by kernel smoothing.
In addition, empirical quantiles can be combined with volatility based and
excess distribution based methods, since empirical quantiles can be used to
estimate the quantiles of the residuals.

2) Volatility based quantile estimators apply a location-scale model. A volatil-
ity estimator leads directly to a quantile estimator, since estimation of the
location is less important. The performance of volatility based quantile esti-
mators depends on the choice of the base distribution, whose location and
scale is estimated. However, in a time series setting the use of the empirical
quantiles of the residuals provides a method that bypasses the problem of
the choice of the base distribution.

3) Excess distribution based quantile estimators model the tail parametrically.
These estimators ignore the central part of the distribution and model only
the tail part parametrically. The tail part of the distribution is called the
excess distribution. Extreme value theory can be used to justify the choice
of the generalized Pareto distribution as the model for the excess distribu-
tion. Empirical work has confirmed that the generalized Pareto distribution
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provides a good fit in many cases. In a time series setting the estimation can
be improved if the parameters of the excess distribution are taken to be time
changing. In addition, in a time series setting we can make the estimation
more robust to the choice of the parametric model by applying the empiri-
cal quantiles of the residuals. In this case, the definition of a residual is more
involved than in the case of volatility based quantile estimators.

1.3 Portfolio Management

Portfolio management studies optimal security selection and capital allocation.
In addition, portfolio management studies performance measurement.

1)

1)

2)

Chapter 9 discusses some basic concepts of portfolio theory.

A major issue is to introduce concepts for the comparison of wealth dis-
tributions and return distributions. The comparison can be made by the
Markowitz mean—variance criterion or by the expected utility. We need to
define what it means that a return distribution is better than another return
distribution. This is needed both in portfolio selection and in performance
measurement.

A second major issue is the distinction between the one period portfolio
selection and multiperiod portfolio selection. We concentrate on the one
period portfolio selection, but it is instructive to discuss the differences
between the approaches.

Chapter 10 studies performance measurement.

The basic performance measures that we discuss are the Sharpe ratio, cer-
tainty equivalent, and the alpha of an asset.

Graphical tools are extremely helpful in performance measurement. The
performance measures are sensitive to the time period over which the per-
formance is measured. The graphical tools address the issue of the sensitivity
of the time period to the performance measures. The graphical tools help to
detect periods of good performance and the periods of bad performance,
and thus they give clues for searching explanations for good and bad perfor-
mance.

Chapter 11 studies Markowitz portfolio theory. Markowitz portfolios are

such portfolios that minimize the variance of the portfolio return, under a

m

inimal requirement for the expected return of the portfolio. Markowitz

portfolios can be utilized in dynamic portfolio selection by predicting the
future returns, future squared returns, and future products of returns of two
assets, as will be done in Chapter 12.

m

Chapter 12 studies dynamic portfolio selection. Dynamic portfolio selection
eans in our terminology such trading where the weights of the portfolio are

5
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rebalanced at the beginning of each period using the available information.
Dynamic portfolio selection utilizes the fact that the expected returns, the
expected squared returns (variances), and the expected products of returns
(covariances) change in time. The classical insight of efficient markets has to be
modified to take into account the predictability of future returns and squared
returns.

1) First, we discuss how prediction can be used in portfolio selection. Time
series regression can be applied in portfolio selection both when we use
the maximization of the expected utility and when we use mean—variance
preferences. In the case of the maximization of the expected utility, we pre-
dict the future utility transformed returns with time series regression. In the
case of mean—variance preferences we predict, the future returns, squared
returns, and products of returns.

2) The Markowitz criterion can be seen as decomposing the expected utility
into the first two moments. The decomposition has the advantage that dif-
ferent methods can be used to predict the returns, squared returns, and
products of returns. The main issue is to study the different types of pre-
dictability of the mean and the variance. In fact, most of the predictability
comes from the variance part, whereas the expectation part has a much
weaker predictability.

a) We need to use different prediction horizons for the prediction of the
returns and for the prediction of the squared returns. For the prediction
of the returns we need to use a prediction horizon of 1 year or more. For
the prediction of squared returns we can use a prediction horizon of 1
month or less.

b) We need to use different prediction methods for the prediction of the
returns and for the prediction of the squared returns. For the prediction
of the returns, it is useful to apply such explanatory variables as dividend
yield and term spread. For the prediction of the squared returns we can
apply GARCH predictors or exponentially weighted moving averages.

1.4 Pricing of Securities

Pricing of securities considers valuation and hedging of financial securities and
their derivatives.

Chapter 13 studies principles of asset pricing. We start the chapter by a
heuristic introduction to pricing of securities, and discuss such concepts as
absolute pricing, relative pricing using arbitrage, and relative pricing using
“statistical arbitrage.”

3 The term statistical arbitrage refers often to pairs trading and to the application of mean rever-
sion. We use term statistical arbitrage more generally, to refer to cases where two payoffs are close
to each other with high probability. Thus, also term probabilistic arbitrage could be used.
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1.4 Pricing of Securities

The first main topic is to state and prove the first fundamental theorem of
asset pricing in discrete time models, and to state the second fundamental
theorem of asset pricing. These theorems provide the foundations on which
we build the development of statistical methods of asset pricing. We give a
constructive proof of the first fundamental theorem of asset pricing, instead
of using tools of abstract functional analysis. The constructive proof of the
first fundamental theorem of asset pricing turns out to be useful, because the
method can be applied in practise to price options in incomplete models.
The construction uses the Esscher martingale measure, and it is a special
case of using utility functions to price derivatives.

The second main topic is to discuss evaluation of pricing and hedging meth-
ods. The basic evaluation method will be to measure the hedging error. The
hedging error is the difference between the payoff of the derivative and the
terminal value of the hedging portfolio. By measuring the hedging error,
we simultaneously measure the modeling error and the estimation error.
Minimizing the hedging error has economic significance, whereas modeling
error and estimation error are underlying statistical concepts. Thus, empha-
sizing the hedging error is an example of emphasizing economic significance
instead of statistical significance.

Chapter 14 studies pricing by arbitrage. The principle of arbitrage-free pric-

ing combines two different topics: pricing of futures and pricing of options in
complete models, like binary models and the Black—Scholes model.

1)

m

A main topic is pricing in multiperiod binary models. First, these models
introduce the idea of backward induction, which is an important numerical
tool to value options in the Black—Scholes model, and which is an important
tool in quadratic hedging. Second, these models lead asymptotically to the
Black-Scholes prices.

A second main topic is to study the properties of Black—Scholes hedging. We
illustrate how hedging frequency, strike price, expected return, and volatil-
ity influence the hedging error. These illustrations give insight into hedging
methods in general, and not only into Black—Scholes hedging.

A third main topic is to study how Black—Scholes pricing and hedging per-
forms with various volatility predictors. Black—Scholes pricing and hedging
provides a benchmark, against which we can measure the performance of
other pricing methods. Black—Scholes pricing and hedging assumes that
the stock prices have a log-normal distribution with a constant volatility.
However, when we combine Black—Scholes pricing and hedging with a time
changing GARCH (1, 1) volatility, then we obtain a method that is hard to
beat.

Chapter 15 gives an overview of several pricing methods in incomplete
odels. Binary models and the Black—Scholes model are complete models,

7
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but we are interested in option pricing when the model makes only few
restrictions on the underlying distribution of the stock prices. Chapter 16 is
devoted to quadratic hedging, and in Chapter 15 we discuss pricing by utility
maximization, pricing by absolutely continuous changes of measures, pricing
in GARCH models, pricing by a nonparametric method, pricing by estimation
of the risk neutral density, and pricing by quantile hedging.

1)

2)

A main topic is to introduce two general approaches for pricing derivatives
in incomplete models: the method of utility functions and the method of
an absolutely continuous change of measure (Girsanov’s theorem). For
some Gaussian processes and for some utility functions these methods
coincide. The method of utility functions can be applied to construct a
nonparametric method of pricing options, whereas Girsanov’s theorem can
be applied in the case of some processes with Gaussian innovations, such
as some GARCH processes.

A second main topic is to discuss pricing in GARCH models. GARCH (1, 1)
model gives a reasonable fit to the distribution of stock prices. Girsanov’s
theorem can be used to find a natural pricing function when it is assumed
that the stock returns follow a GARCH (1, 1) process. Heston—Nandi mod-
ification of the standard GARCH (1, 1) model leads to a computationally
attractive pricing method. Heston—Nandi model has been rather popular,
and it can be considered as a discrete time version of continuous time
stochastic volatility models.

Chapter 16 studies quadratic hedging. In quadratic hedging the price and the

hedging coefficients are determined so that the mean squared hedging error is
minimized. The hedging error means the difference between the terminal value
of the hedging portfolio and the value of the option at the expiration.

1)

A main aim of the chapter is to derive recursive formulas for quadratically
optimal prices and hedging coefficients. It is important to cover both the
global and the local quadratic hedging. Local quadratic hedging leads to
formulas that are easier to implement than the formulas of global quadratic
hedging. Quadratic hedging has some analogies with linear least squares
regression, but quadratic hedging is a version of sequential regression,
which is done in a time series setting. In addition, quadratic hedging
does not assume a linear model, but we are searching the best linear
approximation in the sense of the mean squared error.

A second main aim of the chapter is to implement quadratic hedging.
This will be done only for local quadratic hedging. We implement local
quadratic hedging nonparametrically, without assuming any model for the
underlying distribution of the stock prices. Although quadratic hedging
finds an optimal linear approximation for the payoff of the option, the
quadratically optimal price and hedging coefficients have a nonlinear
dependence on volatility, and thus nonparametric approach may lead to a
better fit for these nonlinear functions than a parametric modeling.



1.4 Pricing of Securities

Chapter 17 studies option strategies. Option strategies provide a large
number of return distributions to choose from, so that it is possible to create a
portfolio that is tailored to the expectations and the risk profile of each investor.
We discuss such option strategies as vertical spreads, strangles, straddles,
butterflies, condors, and calendar spreads. Options can be combined with
stocks to create covered calls and protective put. Options can be combined
with bonds to create capital guarantee products. We give insight into these
option strategies by estimating the return distributions of the strategies.

Chapter 18 describes interest rate derivatives. The market of interest rate
derivatives is even larger than the market of equity derivatives. Interest rate
forwards include forward zero-coupon bonds, forward rate agreements, and
swaps. Interest rate options include caps and floors.
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